Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the worst-case error of least squares algorithms for $L_2$-approximation with high probability (2003.11947v1)

Published 25 Mar 2020 in math.NA and cs.NA

Abstract: It was recently shown in [4] that, for $L_2$-approximation of functions from a Hilbert space, function values are almost as powerful as arbitrary linear information, if the approximation numbers are square-summable. That is, we showed that [ e_n \,\lesssim\, \sqrt{\frac{1}{k_n} \sum_{j\geq k_n} a_j2} \qquad \text{ with }\quad k_n \asymp \frac{n}{\ln(n)}, ] where $e_n$ are the sampling numbers and $a_k$ are the approximation numbers. In particular, if $(a_k)\in\ell_2$, then $e_n$ and $a_n$ are of the same polynomial order. For this, we presented an explicit (weighted least squares) algorithm based on i.i.d. random points and proved that this works with positive probability. This implies the existence of a good deterministic sampling algorithm. Here, we present a modification of the proof in [4] that shows that the same algorithm works with probability at least $1-{n{-c}}$ for all $c>0$.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)