Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Integrating Informativeness, Representativeness and Diversity in Pool-Based Sequential Active Learning for Regression (2003.11786v1)

Published 26 Mar 2020 in cs.LG and stat.ML

Abstract: In many real-world machine learning applications, unlabeled samples are easy to obtain, but it is expensive and/or time-consuming to label them. Active learning is a common approach for reducing this data labeling effort. It optimally selects the best few samples to label, so that a better machine learning model can be trained from the same number of labeled samples. This paper considers active learning for regression (ALR) problems. Three essential criteria -- informativeness, representativeness, and diversity -- have been proposed for ALR. However, very few approaches in the literature have considered all three of them simultaneously. We propose three new ALR approaches, with different strategies for integrating the three criteria. Extensive experiments on 12 datasets in various domains demonstrated their effectiveness.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)