Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Uniform error bounds of an exponential wave integrator for the long-time dynamics of the nonlinear Klein-Gordon equation (2003.11785v1)

Published 26 Mar 2020 in math.NA and cs.NA

Abstract: We establish uniform error bounds of an exponential wave integrator Fourier pseudospectral (EWI-FP) method for the long-time dynamics of the nonlinear Klein-Gordon equation (NKGE) with a cubic nonlinearity whose strength is characterized by $\varepsilon2$ with $\varepsilon \in (0, 1]$ a dimensionless parameter. When $0 < \varepsilon \ll 1$, the problem is equivalent to the long-time dynamics of the NKGE with small initial data (and $O(1)$ cubic nonlinearity), while the amplitude of the initial data (and the solution) is at $O(\varepsilon)$. For the long-time dynamics of the NKGE up to the time at $O(1/\varepsilon{2})$, the resolution and error bounds of the classical numerical methods depend significantly on the small parameter $\varepsilon$, which causes severe numerical burdens as $\varepsilon \to 0+$. The EWI-FP method is fully explicit, symmetric in time and has many superior properties in solving wave equations. By adapting the energy method combined with the method of mathematical induction, we rigorously carry out the uniform error bounds of the EWI-FP discretization at $O(h{m_0} + \varepsilon{2-\beta}\tau2)$ up to the time at $O(1/\varepsilon{\beta})$ with $0 \leq \beta \leq 2$, mesh size $h$, time step $\tau$ and $m_0$ an integer depending on the regularity of the solution. By a rescaling in time, our results are straightforwardly extended to the error bounds and $\varepsilon$-scalability (or meshing strategy requirement) of the EWI-FP method for an oscillatory NKGE, whose solution propagates waves with wavelength at $O(1)$ and $O(\varepsilon{\beta})$ in space and time, respectively, and wave speed at $O(\varepsilon{-\beta})$. Finally, extensive numerical results are reported to confirm our error estimates.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)