Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Real-time 3D Deep Multi-Camera Tracking (2003.11753v1)

Published 26 Mar 2020 in cs.CV

Abstract: Tracking a crowd in 3D using multiple RGB cameras is a challenging task. Most previous multi-camera tracking algorithms are designed for offline setting and have high computational complexity. Robust real-time multi-camera 3D tracking is still an unsolved problem. In this work, we propose a novel end-to-end tracking pipeline, Deep Multi-Camera Tracking (DMCT), which achieves reliable real-time multi-camera people tracking. Our DMCT consists of 1) a fast and novel perspective-aware Deep GroudPoint Network, 2) a fusion procedure for ground-plane occupancy heatmap estimation, 3) a novel Deep Glimpse Network for person detection and 4) a fast and accurate online tracker. Our design fully unleashes the power of deep neural network to estimate the "ground point" of each person in each color image, which can be optimized to run efficiently and robustly. Our fusion procedure, glimpse network and tracker merge the results from different views, find people candidates using multiple video frames and then track people on the fused heatmap. Our system achieves the state-of-the-art tracking results while maintaining real-time performance. Apart from evaluation on the challenging WILDTRACK dataset, we also collect two more tracking datasets with high-quality labels from two different environments and camera settings. Our experimental results confirm that our proposed real-time pipeline gives superior results to previous approaches.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.