Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sampled Training and Node Inheritance for Fast Evolutionary Neural Architecture Search (2003.11613v1)

Published 7 Mar 2020 in cs.NE

Abstract: The performance of a deep neural network is heavily dependent on its architecture and various neural architecture search strategies have been developed for automated network architecture design. Recently, evolutionary neural architecture search (ENAS) has received increasing attention due to the attractive global optimization capability of evolutionary algorithms. However, ENAS suffers from extremely high computation costs because a large number of performance evaluations is usually required in evolutionary optimization and training deep neural networks is itself computationally very intensive. To address this issue, this paper proposes a new evolutionary framework for fast ENAS based on directed acyclic graph, in which parents are randomly sampled and trained on each mini-batch of training data. In addition, a node inheritance strategy is adopted to generate offspring individuals and their fitness is directly evaluated without training. To enhance the feature processing capability of the evolved neural networks, we also encode a channel attention mechanism in the search space. We evaluate the proposed algorithm on the widely used datasets, in comparison with 26 state-of-the-art peer algorithms. Our experimental results show the proposed algorithm is not only computationally much more efficiently, but also highly competitive in learning performance.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.