Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Simple Deterministic Approximation for Submodular Multiple Knapsack Problem (2003.11450v5)

Published 25 Mar 2020 in cs.DS

Abstract: Submodular maximization has been a central topic in theoretical computer science and combinatorial optimization over the last decades. Plenty of well-performed approximation algorithms have been designed for the problem over a variety of constraints. In this paper, we consider the submodular multiple knapsack problem (SMKP). In SMKP, the profits of each subset of elements are specified by a monotone submodular function. The goal is to find a feasible packing of elements over multiple bins (knapsacks) to maximize the profit. Recently, Fairstein et al.~[ESA20] proposed a nearly optimal $(1-e{-1}-\epsilon)$-approximation algorithm for SMKP. Their algorithm is obtained by combining configuration LP, a grouping technique for bin packing, and the continuous greedy algorithm for submodular maximization. As a result, the algorithm is somewhat sophisticated and inherently randomized. In this paper, we present an arguably simple deterministic combinatorial algorithm for SMKP, which achieves a $(1-e{-1}-\epsilon)$-approximation ratio. Our algorithm is based on very different ideas compared with Fairstein et al.~[ESA20].

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.