Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Logarithmic Regret Bound in Partially Observable Linear Dynamical Systems (2003.11227v2)

Published 25 Mar 2020 in cs.LG, math.OC, and stat.ML

Abstract: We study the problem of system identification and adaptive control in partially observable linear dynamical systems. Adaptive and closed-loop system identification is a challenging problem due to correlations introduced in data collection. In this paper, we present the first model estimation method with finite-time guarantees in both open and closed-loop system identification. Deploying this estimation method, we propose adaptive control online learning (AdaptOn), an efficient reinforcement learning algorithm that adaptively learns the system dynamics and continuously updates its controller through online learning steps. AdaptOn estimates the model dynamics by occasionally solving a linear regression problem through interactions with the environment. Using policy re-parameterization and the estimated model, AdaptOn constructs counterfactual loss functions to be used for updating the controller through online gradient descent. Over time, AdaptOn improves its model estimates and obtains more accurate gradient updates to improve the controller. We show that AdaptOn achieves a regret upper bound of $\text{polylog}\left(T\right)$, after $T$ time steps of agent-environment interaction. To the best of our knowledge, AdaptOn is the first algorithm that achieves $\text{polylog}\left(T\right)$ regret in adaptive control of unknown partially observable linear dynamical systems which includes linear quadratic Gaussian (LQG) control.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com