Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Joint Deep Cross-Domain Transfer Learning for Emotion Recognition (2003.11136v1)

Published 24 Mar 2020 in cs.CV

Abstract: Deep learning has been applied to achieve significant progress in emotion recognition. Despite such substantial progress, existing approaches are still hindered by insufficient training data, and the resulting models do not generalize well under mismatched conditions. To address this challenge, we propose a learning strategy which jointly transfers the knowledge learned from rich datasets to source-poor datasets. Our method is also able to learn cross-domain features which lead to improved recognition performance. To demonstrate the robustness of our proposed framework, we conducted experiments on three benchmark emotion datasets including eNTERFACE, SAVEE, and EMODB. Experimental results show that the proposed method surpassed state-of-the-art transfer learning schemes by a significant margin.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.