Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 77 tok/s
Gemini 3.0 Pro 40 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Black-box Off-policy Estimation for Infinite-Horizon Reinforcement Learning (2003.11126v1)

Published 24 Mar 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Off-policy estimation for long-horizon problems is important in many real-life applications such as healthcare and robotics, where high-fidelity simulators may not be available and on-policy evaluation is expensive or impossible. Recently, \cite{liu18breaking} proposed an approach that avoids the \emph{curse of horizon} suffered by typical importance-sampling-based methods. While showing promising results, this approach is limited in practice as it requires data be drawn from the \emph{stationary distribution} of a \emph{known} behavior policy. In this work, we propose a novel approach that eliminates such limitations. In particular, we formulate the problem as solving for the fixed point of a certain operator. Using tools from Reproducing Kernel Hilbert Spaces (RKHSs), we develop a new estimator that computes importance ratios of stationary distributions, without knowledge of how the off-policy data are collected. We analyze its asymptotic consistency and finite-sample generalization. Experiments on benchmarks verify the effectiveness of our approach.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.