Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Autonomous UAV Navigation: A DDPG-based Deep Reinforcement Learning Approach (2003.10923v1)

Published 21 Mar 2020 in cs.RO, cs.AI, cs.LG, and eess.SP

Abstract: In this paper, we propose an autonomous UAV path planning framework using deep reinforcement learning approach. The objective is to employ a self-trained UAV as a flying mobile unit to reach spatially distributed moving or static targets in a given three dimensional urban area. In this approach, a Deep Deterministic Policy Gradient (DDPG) with continuous action space is designed to train the UAV to navigate through or over the obstacles to reach its assigned target. A customized reward function is developed to minimize the distance separating the UAV and its destination while penalizing collisions. Numerical simulations investigate the behavior of the UAV in learning the environment and autonomously determining trajectories for different selected scenarios.

Citations (65)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.