Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

FacebookVideoLive18: A Live Video Streaming Dataset for Streams Metadata and Online Viewers Locations (2003.10820v1)

Published 24 Mar 2020 in cs.MM

Abstract: With the advancement in personal smart devices and pervasive network connectivity, users are no longer passive content consumers, but also contributors in producing new contents. This expansion in live services requires a detailed analysis of broadcasters' and viewers' behavior to maximize users' Quality of Experience (QoE). In this paper, we present a dataset gathered from one of the popular live streaming platforms: Facebook. In this dataset, we stored more than 1,500,000 live stream records collected in June and July 2018. These data include public live videos from all over the world. However, Facebook live API does not offer the possibility to collect online videos with their fine grained data. The API allows to get the general data of a stream, only if we know its ID (identifier). Therefore, using the live map website provided by Facebook and showing the locations of online streams and locations of viewers, we extracted video IDs and different coordinates along with general metadata. Then, having these IDs and using the API, we can collect the fine grained metadata of public videos that might be useful for the research community. We also present several preliminary analyses to describe and identify the patterns of the streams and viewers. Such fine grained details will enable the multimedia community to recreate real-world scenarios particularly for resource allocation, caching, computation, and transcoding in edge networks. Existing datasets do not provide the locations of the viewers, which limits the efforts made to allocate the multimedia resources as close as possible to viewers and to offer better QoE.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube