Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Regret and Belief Complexity Trade-off in Gaussian Process Bandits via Information Thresholding (2003.10550v3)

Published 23 Mar 2020 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Bayesian optimization is a framework for global search via maximum a posteriori updates rather than simulated annealing, and has gained prominence for decision-making under uncertainty. In this work, we cast Bayesian optimization as a multi-armed bandit problem, where the payoff function is sampled from a Gaussian process (GP). Further, we focus on action selections via upper confidence bound (UCB) or expected improvement (EI) due to their prevalent use in practice. Prior works using GPs for bandits cannot allow the iteration horizon $T$ to be large, as the complexity of computing the posterior parameters scales cubically with the number of past observations. To circumvent this computational burden, we propose a simple statistical test: only incorporate an action into the GP posterior when its conditional entropy exceeds an $\epsilon$ threshold. Doing so permits us to precisely characterize the trade-off between regret bounds of GP bandit algorithms and complexity of the posterior distributions depending on the compression parameter $\epsilon$ for both discrete and continuous action sets. To best of our knowledge, this is the first result which allows us to obtain sublinear regret bounds while still maintaining sublinear growth rate of the complexity of the posterior which is linear in the existing literature. Moreover, a provably finite bound on the complexity could be achieved but the algorithm would result in $\epsilon$-regret which means $\textbf{Reg}_T/T \rightarrow \mathcal{O}(\epsilon)$ as $T\rightarrow \infty$. Experimentally, we observe state of the art accuracy and complexity trade-offs for GP bandit algorithms applied to global optimization, suggesting the merits of compressed GPs in bandit settings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.