Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Creating Synthetic Datasets via Evolution for Neural Program Synthesis (2003.10485v2)

Published 23 Mar 2020 in cs.LG and stat.ML

Abstract: Program synthesis is the task of automatically generating a program consistent with a given specification. A natural way to specify programs is to provide examples of desired input-output behavior, and many current program synthesis approaches have achieved impressive results after training on randomly generated input-output examples. However, recent work has discovered that some of these approaches generalize poorly to data distributions different from that of the randomly generated examples. We show that this problem applies to other state-of-the-art approaches as well and that current methods to counteract this problem are insufficient. We then propose a new, adversarial approach to control the bias of synthetic data distributions and show that it outperforms current approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube