Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decoding Imagined Speech using Wavelet Features and Deep Neural Networks (2003.10433v1)

Published 19 Mar 2020 in q-bio.NC, cs.LG, and eess.SP

Abstract: This paper proposes a novel approach that uses deep neural networks for classifying imagined speech, significantly increasing the classification accuracy. The proposed approach employs only the EEG channels over specific areas of the brain for classification, and derives distinct feature vectors from each of those channels. This gives us more data to train a classifier, enabling us to use deep learning approaches. Wavelet and temporal domain features are extracted from each channel. The final class label of each test trial is obtained by applying a majority voting on the classification results of the individual channels considered in the trial. This approach is used for classifying all the 11 prompts in the KaraOne dataset of imagined speech. The proposed architecture and the approach of treating the data have resulted in an average classification accuracy of 57.15%, which is an improvement of around 35% over the state-of-the-art results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (25)

Summary

We haven't generated a summary for this paper yet.