Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive Name Entity Recognition under Highly Unbalanced Data (2003.10296v1)

Published 10 Mar 2020 in cs.CL, cs.LG, and stat.ML

Abstract: For several purposes in NLP, such as Information Extraction, Sentiment Analysis or Chatbot, Named Entity Recognition (NER) holds an important role as it helps to determine and categorize entities in text into predefined groups such as the names of persons, locations, quantities, organizations or percentages, etc. In this report, we present our experiments on a neural architecture composed of a Conditional Random Field (CRF) layer stacked on top of a Bi-directional LSTM (BI-LSTM) layer for solving NER tasks. Besides, we also employ a fusion input of embedding vectors (Glove, BERT), which are pre-trained on the huge corpus to boost the generalization capacity of the model. Unfortunately, due to the heavy unbalanced distribution cross-training data, both approaches just attained a bad performance on less training samples classes. To overcome this challenge, we introduce an add-on classification model to split sentences into two different sets: Weak and Strong classes and then designing a couple of Bi-LSTM-CRF models properly to optimize performance on each set. We evaluated our models on the test set and discovered that our method can improve performance for Weak classes significantly by using a very small data set (approximately 0.45\%) compared to the rest classes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube