Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Adaptive Name Entity Recognition under Highly Unbalanced Data (2003.10296v1)

Published 10 Mar 2020 in cs.CL, cs.LG, and stat.ML

Abstract: For several purposes in NLP, such as Information Extraction, Sentiment Analysis or Chatbot, Named Entity Recognition (NER) holds an important role as it helps to determine and categorize entities in text into predefined groups such as the names of persons, locations, quantities, organizations or percentages, etc. In this report, we present our experiments on a neural architecture composed of a Conditional Random Field (CRF) layer stacked on top of a Bi-directional LSTM (BI-LSTM) layer for solving NER tasks. Besides, we also employ a fusion input of embedding vectors (Glove, BERT), which are pre-trained on the huge corpus to boost the generalization capacity of the model. Unfortunately, due to the heavy unbalanced distribution cross-training data, both approaches just attained a bad performance on less training samples classes. To overcome this challenge, we introduce an add-on classification model to split sentences into two different sets: Weak and Strong classes and then designing a couple of Bi-LSTM-CRF models properly to optimize performance on each set. We evaluated our models on the test set and discovered that our method can improve performance for Weak classes significantly by using a very small data set (approximately 0.45\%) compared to the rest classes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.