Papers
Topics
Authors
Recent
2000 character limit reached

Efficient sampling generation from explicit densities via Normalizing Flows (2003.10200v1)

Published 23 Mar 2020 in cs.LG and stat.ML

Abstract: For many applications, such as computing the expected value of different magnitudes, sampling from a known probability density function, the target density, is crucial but challenging through the inverse transform. In these cases, rejection and importance sampling require suitable proposal densities, which can be evaluated and sampled from efficiently. We will present a method based on normalizing flows, proposing a solution for the common problem of exploding reverse Kullback-Leibler divergence due to the target density having values of 0 in regions of the flow transformation. The performance of the method will be demonstrated using a multi-mode complex density function.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.