Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Modelling High-Order Social Relations for Item Recommendation (2003.10149v1)

Published 23 Mar 2020 in cs.IR and cs.SI

Abstract: The prevalence of online social network makes it compulsory to study how social relations affect user choice. However, most existing methods leverage only first-order social relations, that is, the direct neighbors that are connected to the target user. The high-order social relations, e.g., the friends of friends, which very informative to reveal user preference, have been largely ignored. In this work, we focus on modeling the indirect influence from the high-order neighbors in social networks to improve the performance of item recommendation. Distinct from mainstream social recommenders that regularize the model learning with social relations, we instead propose to directly factor social relations in the predictive model, aiming at learning better user embeddings to improve recommendation. To address the challenge that high-order neighbors increase dramatically with the order size, we propose to recursively "propagate" embeddings along the social network, effectively injecting the influence of high-order neighbors into user representation. We conduct experiments on two real datasets of Yelp and Douban to verify our High-Order Social Recommender (HOSR) model. Empirical results show that our HOSR significantly outperforms recent graph regularization-based recommenders NSCR and IF-BPR+, and graph convolutional network-based social influence prediction model DeepInf, achieving new state-of-the-arts of the task.

Citations (65)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube