Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms for Non-Stationary Generalized Linear Bandits (2003.10113v1)

Published 23 Mar 2020 in cs.LG and stat.ML

Abstract: The statistical framework of Generalized Linear Models (GLM) can be applied to sequential problems involving categorical or ordinal rewards associated, for instance, with clicks, likes or ratings. In the example of binary rewards, logistic regression is well-known to be preferable to the use of standard linear modeling. Previous works have shown how to deal with GLMs in contextual online learning with bandit feedback when the environment is assumed to be stationary. In this paper, we relax this latter assumption and propose two upper confidence bound based algorithms that make use of either a sliding window or a discounted maximum-likelihood estimator. We provide theoretical guarantees on the behavior of these algorithms for general context sequences and in the presence of abrupt changes. These results take the form of high probability upper bounds for the dynamic regret that are of order d2/3 G1/3 T2/3 , where d, T and G are respectively the dimension of the unknown parameter, the number of rounds and the number of breakpoints up to time T. The empirical performance of the algorithms is illustrated in simulated environments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yoan Russac (7 papers)
  2. Olivier Cappé (28 papers)
  3. Aurélien Garivier (56 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.