Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic ReLU (2003.10027v2)

Published 22 Mar 2020 in cs.CV

Abstract: Rectified linear units (ReLU) are commonly used in deep neural networks. So far ReLU and its generalizations (non-parametric or parametric) are static, performing identically for all input samples. In this paper, we propose dynamic ReLU (DY-ReLU), a dynamic rectifier of which parameters are generated by a hyper function over all in-put elements. The key insight is that DY-ReLU encodes the global context into the hyper function, and adapts the piecewise linear activation function accordingly. Compared to its static counterpart, DY-ReLU has negligible extra computational cost, but significantly more representation capability, especially for light-weight neural networks. By simply using DY-ReLU for MobileNetV2, the top-1 accuracy on ImageNet classification is boosted from 72.0% to 76.2% with only 5% additional FLOPs.

Citations (145)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.