Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic scoring of apnea and hypopnea events using blood oxygen saturation signals (2003.09920v2)

Published 22 Mar 2020 in eess.SP and cs.CY

Abstract: The obstructive sleep apnea-hypopnea (OSAH) syndrome is a very common and frequently undiagnosed sleep disorder. It is characterized by repeated events of partial (hypopnea) or total (apnea) obstruction of the upper airway while sleeping. This study makes use of a previously developed method called DAS-KSVD for multiclass structured dictionary learning to automatically detect individual events of apnea and hypopnea using only blood oxygen saturation signals. The method uses a combined discriminant measure which is capable of efficiently quantifying the degree of discriminability of each one of the atoms in a dictionary. DAS-KSVD was applied to detect and classify apnea and hypopnea events from signals obtained from the Sleep Heart Health Study database. For moderate to severe OSAH screening, a receiver operating characteristic curve analysis of the results shows an area under the curve of 0.957 and diagnostic sensitivity and specificity of 87.56% and 88.32%, respectively. These results represent improvements as compared to most state-of-the-art procedures. Hence, the method could be used for screening OSAH syndrome more reliably and conveniently, using only a pulse oximeter.

Citations (19)

Summary

We haven't generated a summary for this paper yet.