Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Rig-space Neural Rendering (2003.09820v1)

Published 22 Mar 2020 in cs.GR

Abstract: Movie productions use high resolution 3d characters with complex proprietary rigs to create the highest quality images possible for large displays. Unfortunately, these 3d assets are typically not compatible with real-time graphics engines used for games, mixed reality and real-time pre-visualization. Consequently, the 3d characters need to be re-modeled and re-rigged for these new applications, requiring weeks of work and artistic approval. Our solution to this problem is to learn a compact image-based rendering of the original 3d character, conditioned directly on the rig parameters. Our idea is to render the character in many different poses and views, and to train a deep neural network to render high resolution images, from the rig parameters directly. Many neural rendering techniques have been proposed to render from 2d skeletons, or geometry and UV maps. However these require manual work, and to do not remain compatible with the animator workflow of manipulating rig widgets, as well as the real-time game engine pipeline of interpolating rig parameters. We extend our architecture to support dynamic re-lighting and composition with other 3d objects in the scene. We designed a network that efficiently generates multiple scene feature maps such as normals, depth, albedo and mask, which are composed with other scene objects to form the final image.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.