Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Translation of Array-Based Loops to Distributed Data-Parallel Programs (2003.09769v1)

Published 21 Mar 2020 in cs.DB and cs.PL

Abstract: Large volumes of data generated by scientific experiments and simulations come in the form of arrays, while programs that analyze these data are frequently expressed in terms of array operations in an imperative, loop-based language. But, as datasets grow larger, new frameworks in distributed Big Data analytics have become essential tools to large-scale scientific computing. Scientists, who are typically comfortable with numerical analysis tools but are not familiar with the intricacies of Big Data analytics, must now learn to convert their loop-based programs to distributed data-parallel programs. We present a novel framework for translating programs expressed as array-based loops to distributed data parallel programs that is more general and efficient than related work. Although our translations are over sparse arrays, we extend our framework to handle packed arrays, such as tiled matrices, without sacrificing performance. We report on a prototype implementation on top of Spark and evaluate the performance of our system relative to hand-written programs.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.