Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Robust Out-of-distribution Detection for Neural Networks (2003.09711v6)

Published 21 Mar 2020 in cs.LG and stat.ML

Abstract: Detecting out-of-distribution (OOD) inputs is critical for safely deploying deep learning models in the real world. Existing approaches for detecting OOD examples work well when evaluated on benign in-distribution and OOD samples. However, in this paper, we show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs with minimal adversarial perturbations which don't change their semantics. Formally, we extensively study the problem of Robust Out-of-Distribution Detection on common OOD detection approaches, and show that state-of-the-art OOD detectors can be easily fooled by adding small perturbations to the in-distribution and OOD inputs. To counteract these threats, we propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples. Our method can be flexibly combined with, and render existing methods robust. On common benchmark datasets, we show that ALOE substantially improves the robustness of state-of-the-art OOD detection, with 58.4% AUROC improvement on CIFAR-10 and 46.59% improvement on CIFAR-100.

Citations (78)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.