Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Uncoupled Training Architecture for Large Graph Learning (2003.09638v2)

Published 21 Mar 2020 in cs.LG, cs.SI, and stat.ML

Abstract: Graph Convolutional Network (GCN) has been widely used in graph learning tasks. However, GCN-based models (GCNs) is an inherently coupled training framework repetitively conducting the complex neighboring aggregation, which leads to the limitation of flexibility in processing large-scale graph. With the depth of layers increases, the computational and memory cost of GCNs grow explosively due to the recursive neighborhood expansion. To tackle these issues, we present Node2Grids, a flexible uncoupled training framework that leverages the independent mapped data for obtaining the embedding. Instead of directly processing the coupled nodes as GCNs, Node2Grids supports a more efficacious method in practice, mapping the coupled graph data into the independent grid-like data which can be fed into the efficient Convolutional Neural Network (CNN). This simple but valid strategy significantly saves memory and computational resource while achieving comparable results with the leading GCN-based models. Specifically, by ranking each node's influence through degree, Node2Grids selects the most influential first-order as well as second-order neighbors with central node fusion information to construct the grid-like data. For further improving the efficiency of downstream tasks, a simple CNN-based neural network is employed to capture the significant information from the mapped grid-like data. Moreover, the grid-level attention mechanism is implemented, which enables implicitly specifying the different weights for neighboring nodes with different influences. In addition to the typical transductive and inductive learning tasks, we also verify our framework on million-scale graphs to demonstrate the superiority of the proposed Node2Grids model against the state-of-the-art GCN-based approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube