Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

One Neuron to Fool Them All (2003.09372v2)

Published 20 Mar 2020 in cs.LG and stat.ML

Abstract: Despite vast research in adversarial examples, the root causes of model susceptibility are not well understood. Instead of looking at attack-specific robustness, we propose a notion that evaluates the sensitivity of individual neurons in terms of how robust the model's output is to direct perturbations of that neuron's output. Analyzing models from this perspective reveals distinctive characteristics of standard as well as adversarially-trained robust models, and leads to several curious results. In our experiments on CIFAR-10 and ImageNet, we find that attacks using a loss function that targets just a single sensitive neuron find adversarial examples nearly as effectively as ones that target the full model. We analyze the properties of these sensitive neurons to propose a regularization term that can help a model achieve robustness to a variety of different perturbation constraints while maintaining accuracy on natural data distributions. Code for all our experiments is available at https://github.com/iamgroot42/sauron .

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: