Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning-based Bias Correction for Ultra-wideband Localization of Resource-constrained Mobile Robots (2003.09371v1)

Published 20 Mar 2020 in cs.RO, cs.LG, cs.SY, and eess.SY

Abstract: Accurate indoor localization is a crucial enabling technology for many robotics applications, from warehouse management to monitoring tasks. Ultra-wideband (UWB) ranging is a promising solution which is low-cost, lightweight, and computationally inexpensive compared to alternative state-of-the-art approaches such as simultaneous localization and mapping, making it especially suited for resource-constrained aerial robots. Many commercially-available ultra-wideband radios, however, provide inaccurate, biased range measurements. In this article, we propose a bias correction framework compatible with both two-way ranging and time difference of arrival ultra-wideband localization. Our method comprises of two steps: (i) statistical outlier rejection and (ii) a learning-based bias correction. This approach is scalable and frugal enough to be deployed on-board a nano-quadcopter's microcontroller. Previous research mostly focused on two-way ranging bias correction and has not been implemented in closed-loop nor using resource-constrained robots. Experimental results show that, using our approach, the localization error is reduced by ~18.5% and 48% (for TWR and TDoA, respectively), and a quadcopter can accurately track trajectories with position information from UWB only.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.