Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast generalized Nash equilibrium seeking under partial-decision information (2003.09335v3)

Published 20 Mar 2020 in math.OC, cs.GT, and cs.MA

Abstract: We address the generalized Nash equilibrium seeking problem in a partial-decision information scenario, where each agent can only exchange information with some neighbors, although its cost function possibly depends on the strategies of all agents. The few existing methods build on projected pseudo-gradient dynamics, and require either double-layer iterations or conservative conditions on the step sizes. To overcome both these flaws and improve efficiency, we design the first fully-distributed single-layer algorithms based on proximal best-response. Our schemes are fixed-step and allow for inexact updates, which is crucial for reducing the computational complexity. Under standard assumptions on the game primitives, we establish convergence to a variational equilibrium (with linear rate for games without coupling constraints) by recasting our algorithms as proximal-point methods, opportunely preconditioned to distribute the computation among the agents. Since our analysis hinges on a restricted monotonicity property, we also provide new general results that significantly extend the domain of applicability of proximal-point methods. Besides, the operator-theoretic approach favors the implementation of provably correct acceleration schemes that can further improve the convergence speed. Finally, the potential of our algorithms is demonstrated numerically, revealing much faster convergence with respect to projected pseudo-gradient methods and validating our theoretical findings.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube