Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

L2B: Learning to Balance the Safety-Efficiency Trade-off in Interactive Crowd-aware Robot Navigation (2003.09207v2)

Published 20 Mar 2020 in cs.RO and cs.LG

Abstract: This work presents a deep reinforcement learning framework for interactive navigation in a crowded place. Our proposed approach, Learning to Balance (L2B) framework enables mobile robot agents to steer safely towards their destinations by avoiding collisions with a crowd, while actively clearing a path by asking nearby pedestrians to make room, if necessary, to keep their travel efficient. We observe that the safety and efficiency requirements in crowd-aware navigation have a trade-off in the presence of social dilemmas between the agent and the crowd. On the one hand, intervening in pedestrian paths too much to achieve instant efficiency will result in collapsing a natural crowd flow and may eventually put everyone, including the self, at risk of collisions. On the other hand, keeping in silence to avoid every single collision will lead to the agent's inefficient travel. With this observation, our L2B framework augments the reward function used in learning an interactive navigation policy to penalize frequent active path clearing and passive collision avoidance, which substantially improves the balance of the safety-efficiency trade-off. We evaluate our L2B framework in a challenging crowd simulation and demonstrate its superiority, in terms of both navigation success and collision rate, over a state-of-the-art navigation approach.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.