Papers
Topics
Authors
Recent
2000 character limit reached

Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations (2003.09067v1)

Published 20 Mar 2020 in math.NA and cs.NA

Abstract: Gradient schemes is a framework that enables the unified convergence analysis of many numerical methods for elliptic and parabolic partial differential equations: conforming and non-conforming Finite Element, Mixed Finite Element and Finite Volume methods. We show here that this framework can be applied to a family of degenerate non-linear parabolic equations (which contain in particular the Richards', Stefan's and Leray--Lions' models), and we prove a uniform-in-time strong-in-space convergence result for the gradient scheme approximations of these equations. In order to establish this convergence, we develop several discrete compactness tools for numerical approximations of parabolic models, including a discontinuous Ascoli-Arzel`a theorem and a uniform-in-time weak-in-space discrete Aubin-Simon theorem. The model's degeneracies, which occur both in the time and space derivatives, also requires us to develop a discrete compensated compactness result.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.