Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multilayer Dense Connections for Hierarchical Concept Classification (2003.09015v2)

Published 19 Mar 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Classification is a pivotal function for many computer vision tasks such as object classification, detection, scene segmentation. Multinomial logistic regression with a single final layer of dense connections has become the ubiquitous technique for CNN-based classification. While these classifiers project a mapping between the input and a set of output category classes, they do not typically yield a comprehensive description of the category. In particular, when a CNN based image classifier correctly identifies the image of a Chimpanzee, its output does not clarify that Chimpanzee is a member of Primate, Mammal, Chordate families and a living thing. We propose a multilayer dense connectivity for concurrent prediction of category and its conceptual superclasses in hierarchical order by the same CNN. We experimentally demonstrate that our proposed network can simultaneously predict both the coarse superclasses and finer categories better than several existing algorithms in multiple datasets.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.