Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generating new concepts with hybrid neuro-symbolic models (2003.08978v3)

Published 19 Mar 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Human conceptual knowledge supports the ability to generate novel yet highly structured concepts, and the form of this conceptual knowledge is of great interest to cognitive scientists. One tradition has emphasized structured knowledge, viewing concepts as embedded in intuitive theories or organized in complex symbolic knowledge structures. A second tradition has emphasized statistical knowledge, viewing conceptual knowledge as an emerging from the rich correlational structure captured by training neural networks and other statistical models. In this paper, we explore a synthesis of these two traditions through a novel neuro-symbolic model for generating new concepts. Using simple visual concepts as a testbed, we bring together neural networks and symbolic probabilistic programs to learn a generative model of novel handwritten characters. Two alternative models are explored with more generic neural network architectures. We compare each of these three models for their likelihoods on held-out character classes and for the quality of their productions, finding that our hybrid model learns the most convincing representation and generalizes further from the training observations.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com