Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Salient Facial Features from Humans and Deep Neural Networks (2003.08765v1)

Published 8 Mar 2020 in cs.CV

Abstract: In this work, we explore the features that are used by humans and by convolutional neural networks (ConvNets) to classify faces. We use Guided Backpropagation (GB) to visualize the facial features that influence the output of a ConvNet the most when identifying specific individuals; we explore how to best use GB for that purpose. We use a human intelligence task to find out which facial features humans find to be the most important for identifying specific individuals. We explore the differences between the saliency information gathered from humans and from ConvNets. Humans develop biases in employing available information on facial features to discriminate across faces. Studies show these biases are influenced both by neurological development and by each individual's social experience. In recent years the computer vision community has achieved human-level performance in many face processing tasks with deep neural network-based models. These face processing systems are also subject to systematic biases due to model architectural choices and training data distribution.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.