Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LANCE: Efficient Low-Precision Quantized Winograd Convolution for Neural Networks Based on Graphics Processing Units (2003.08646v3)

Published 19 Mar 2020 in cs.CV, cs.LG, and cs.NE

Abstract: Accelerating deep convolutional neural networks has become an active topic and sparked an interest in academia and industry. In this paper, we propose an efficient low-precision quantized Winograd convolution algorithm, called LANCE, which combines the advantages of fast convolution and quantization techniques. By embedding linear quantization operations into the Winograd-domain, the fast convolution can be performed efficiently under low-precision computation on graphics processing units. We test neural network models with LANCE on representative image classification datasets, including SVHN, CIFAR, and ImageNet. The experimental results show that our 8-bit quantized Winograd convolution improves the performance by up to 2.40x over the full-precision convolution with trivial accuracy loss.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.