Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fully reversible neural networks for large-scale 3D seismic horizon tracking (2003.08466v1)

Published 18 Mar 2020 in physics.geo-ph and eess.IV

Abstract: Tracking a horizon in seismic images or 3D volumes is an integral part of seismic interpretation. The last few decades saw progress in using neural networks for this task, starting from shallow networks for 1D traces, to deeper convolutional neural networks for large 2D images. Because geological structures are intrinsically 3D, we hope to see improved horizon tracking by training networks on 3D seismic data cubes. While there are some 3D convolutional neural networks for various seismic interpretation tasks, they are restricted to shallow networks or relatively small 3D inputs because of memory limitations. The required memory for the network states and weights increases with network depth. We present a fully reversible network for horizon tracking that has a memory requirement that is independent of network depth. To tackle memory issues regarding the network weights, we use layers that train in a factorized form directly. Therefore, we can maintain a large number of network channels while keeping the number of convolutional kernels low. We use the saved memory to increase the input size of the data by order of magnitude such that the network can better learn from large structures in the data. A field data example verifies the proposed network structure is suitable for seismic horizon tracking.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube