Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamic Point Cloud Denoising via Manifold-to-Manifold Distance (2003.08355v3)

Published 17 Mar 2020 in eess.IV, cs.CV, cs.LG, and cs.MM

Abstract: 3D dynamic point clouds provide a natural discrete representation of real-world objects or scenes in motion, with a wide range of applications in immersive telepresence, autonomous driving, surveillance, \etc. Nevertheless, dynamic point clouds are often perturbed by noise due to hardware, software or other causes. While a plethora of methods have been proposed for static point cloud denoising, few efforts are made for the denoising of dynamic point clouds, which is quite challenging due to the irregular sampling patterns both spatially and temporally. In this paper, we represent dynamic point clouds naturally on spatial-temporal graphs, and exploit the temporal consistency with respect to the underlying surface (manifold). In particular, we define a manifold-to-manifold distance and its discrete counterpart on graphs to measure the variation-based intrinsic distance between surface patches in the temporal domain, provided that graph operators are discrete counterparts of functionals on Riemannian manifolds. Then, we construct the spatial-temporal graph connectivity between corresponding surface patches based on the temporal distance and between points in adjacent patches in the spatial domain. Leveraging the initial graph representation, we formulate dynamic point cloud denoising as the joint optimization of the desired point cloud and underlying graph representation, regularized by both spatial smoothness and temporal consistency. We reformulate the optimization and present an efficient algorithm. Experimental results show that the proposed method significantly outperforms independent denoising of each frame from state-of-the-art static point cloud denoising approaches, on both Gaussian noise and simulated LiDAR noise.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.