Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Capsule GAN Using Capsule Network for Generator Architecture (2003.08047v1)

Published 18 Mar 2020 in cs.CV, cs.LG, and eess.IV

Abstract: This paper presents Capsule GAN, a Generative adversarial network using Capsule Network not only in the discriminator but also in the generator. Recently, Generative adversarial networks (GANs) has been intensively studied. However, generating images by GANs is difficult. Therefore, GANs sometimes generate poor quality images. These GANs use convolutional neural networks (CNNs). However, CNNs have the defect that the relational information between features of the image may be lost. Capsule Network, proposed by Hinton in 2017, overcomes the defect of CNNs. Capsule GAN reported previously uses Capsule Network in the discriminator. However, instead of using Capsule Network, Capsule GAN reported in previous studies uses CNNs in generator architecture like DCGAN. This paper introduces two approaches to use Capsule Network in the generator. One is to use DigitCaps layer from the discriminator as the input to the generator. DigitCaps layer is the output layer of Capsule Network. It has the features of the input images of the discriminator. The other is to use the reverse operation of recognition process in Capsule Network in the generator. We compare Capsule GAN proposed in this paper with conventional GAN using CNN and Capsule GAN which uses Capsule Network in the discriminator only. The datasets are MNIST, Fashion-MNIST and color images. We show that Capsule GAN outperforms the GAN using CNN and the GAN using Capsule Network in the discriminator only. The architecture of Capsule GAN proposed in this paper is a basic architecture using Capsule Network. Therefore, we can apply the existing improvement techniques for GANs to Capsule GAN.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.