Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the Wild (2003.07581v1)

Published 17 Mar 2020 in cs.CV and cs.LG

Abstract: One major challenge for monocular 3D human pose estimation in-the-wild is the acquisition of training data that contains unconstrained images annotated with accurate 3D poses. In this paper, we address this challenge by proposing a weakly-supervised approach that does not require 3D annotations and learns to estimate 3D poses from unlabeled multi-view data, which can be acquired easily in in-the-wild environments. We propose a novel end-to-end learning framework that enables weakly-supervised training using multi-view consistency. Since multi-view consistency is prone to degenerated solutions, we adopt a 2.5D pose representation and propose a novel objective function that can only be minimized when the predictions of the trained model are consistent and plausible across all camera views. We evaluate our proposed approach on two large scale datasets (Human3.6M and MPII-INF-3DHP) where it achieves state-of-the-art performance among semi-/weakly-supervised methods.

Citations (115)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.