Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Interpretable Personalization via Policy Learning with Linear Decision Boundaries (2003.07545v4)

Published 17 Mar 2020 in cs.LG, econ.EM, math.ST, stat.ML, and stat.TH

Abstract: With the rise of the digital economy and an explosion of available information about consumers, effective personalization of goods and services has become a core business focus for companies to improve revenues and maintain a competitive edge. This paper studies the personalization problem through the lens of policy learning, where the goal is to learn a decision-making rule (a policy) that maps from consumer and product characteristics (features) to recommendations (actions) in order to optimize outcomes (rewards). We focus on using available historical data for offline learning with unknown data collection procedures, where a key challenge is the non-random assignment of recommendations. Moreover, in many business and medical applications, interpretability of a policy is essential. We study the class of policies with linear decision boundaries to ensure interpretability, and propose learning algorithms using tools from causal inference to address unbalanced treatments. We study several optimization schemes to solve the associated non-convex, non-smooth optimization problem, and find that a Bayesian optimization algorithm is effective. We test our algorithm with extensive simulation studies and apply it to an anonymized online marketplace customer purchase dataset, where the learned policy outputs a personalized discount recommendation based on customer and product features in order to maximize gross merchandise value (GMV) for sellers. Our learned policy improves upon the platform's baseline by 88.2\% in net sales revenue, while also providing informative insights on which features are important for the decision-making process. Our findings suggest that our proposed policy learning framework using tools from causal inference and Bayesian optimization provides a promising practical approach to interpretable personalization across a wide range of applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.