Papers
Topics
Authors
Recent
2000 character limit reached

Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis (2003.07337v1)

Published 16 Mar 2020 in stat.ML, cs.LG, and math.OC

Abstract: We address the problem of policy evaluation in discounted Markov decision processes, and provide instance-dependent guarantees on the $\ell_\infty$-error under a generative model. We establish both asymptotic and non-asymptotic versions of local minimax lower bounds for policy evaluation, thereby providing an instance-dependent baseline by which to compare algorithms. Theory-inspired simulations show that the widely-used temporal difference (TD) algorithm is strictly suboptimal when evaluated in a non-asymptotic setting, even when combined with Polyak-Ruppert iterate averaging. We remedy this issue by introducing and analyzing variance-reduced forms of stochastic approximation, showing that they achieve non-asymptotic, instance-dependent optimality up to logarithmic factors.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.