Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Metrics for Evaluating the Efficiency of Compressing Sensing Techniques (2003.07307v1)

Published 16 Mar 2020 in cs.IT, eess.SP, and math.IT

Abstract: Compressive sensing has been receiving a great deal of interest from researchers in many areas because of its ability in speeding up data acquisition. This framework allows fast signal acquisition and compression when signals are sparse in some domains. It extracts the main information from high dimensional sparse signals using only a few samples, then the sparse signals are recovered from the few measurements. There are two main points to consider when it comes to using compressive sensing. The first one is how to design the linear measurement matrix to ensure that the compressive sensing is meeting the objectives of the application. The second is how to recover the sparse signal from few measurements. Performing compressive sensing requires analyzing and investigating the efficiency of the measurement matrix and the recovery algorithm. To date, constructing explicit measurement matrices and developing efficient recovery algorithms are still open challenges in applications. Thus, this paper describes metrics to evaluate the performance of compressive sensing techniques.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.