Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

WiFi-Inertial Indoor Pose Estimation for Micro Aerial Vehicles (2003.07240v1)

Published 16 Mar 2020 in cs.RO and eess.SP

Abstract: This paper presents an indoor pose estimation system for micro aerial vehicles (MAVs) with a single WiFi access point. Conventional approaches based on computer vision are limited by illumination conditions and environmental texture. Our system is free of visual limitations and instantly deployable, working upon existing WiFi infrastructure without any deployment cost. Our system consists of two coupled modules. First, we propose an angle-of-arrival (AoA) estimation algorithm to estimate MAV attitudes and disentangle the AoA for positioning. Second, we formulate a WiFi-inertial sensor fusion model that fuses the AoA and the odometry measured by inertial sensors to optimize MAV poses. Considering the practicality of MAVs, our system is designed to be real-time and initialization-free for the need of agile flight in unknown environments. The indoor experiments show that our system achieves the accuracy of pose estimation with the position error of $61.7$ cm and the attitude error of $0.92\circ$.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.