Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Joint COCO and Mapillary Workshop at ICCV 2019 Keypoint Detection Challenge Track Technical Report: Distribution-Aware Coordinate Representation for Human Pose Estimation (2003.07232v1)

Published 13 Mar 2020 in cs.CV

Abstract: In this paper, we focus on the coordinate representation in human pose estimation. While being the standard choice, heatmap based representation has not been systematically investigated. We found that the process of coordinate decoding (i.e. transforming the predicted heatmaps to the coordinates) is surprisingly significant for human pose estimation performance, which nevertheless was not recognised before. In light of the discovered importance, we further probe the design limitations of the standard coordinate decoding method and propose a principled distribution-aware decoding method. Meanwhile, we improve the standard coordinate encoding process (i.e. transforming ground-truth coordinates to heatmaps) by generating accurate heatmap distributions for unbiased model training. Taking them together, we formulate a novel Distribution-Aware coordinate Representation for Keypoint (DARK) method. Serving as a model-agnostic plug-in, DARK significantly improves the performance of a variety of state-of-the-art human pose estimation models. Extensive experiments show that DARK yields the best results on COCO keypoint detection challenge, validating the usefulness and effectiveness of our novel coordinate representation idea. The project page containing more details is at https://ilovepose.github.io/coco

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.