Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Approximation, Bounding & Exact Calculation of Block Error Probability for Random Code Ensembles (2003.06807v4)

Published 15 Mar 2020 in cs.IT and math.IT

Abstract: This paper presents a method to calculate the exact average block error probability of some random code ensembles under maximum-likelihood decoding. The proposed method is applicable to various channels and ensembles. The focus is on both spherical and Gaussian random codes on the additive white Gaussian noise channel as well as binary random codes on both the binary symmetric channel and the binary erasure channel. While for the uniform spherical ensemble Shannon, in 1959, argued with solid angles in $N$-dimensional space, the presented approach projects the problem into two dimensions and applies standard trigonometry. This simplifies the derivation and also allows for the analysis of the independent identically distributed (i.i.d.) Gaussian ensemble which turns out to perform better for short blocklengths and high rates. Moreover, a new lower bound on the average block error probability of the uniform spherical ensemble is found. For codes with more than three codewords, it is tighter than the sphere packing bound, but requires exactly the same computing effort. Furthermore, tight approximations are proposed to simplify the computation of both the exact average error probability and the two bounds. For the binary symmetric channel and the binary erasure channel, bounds on the average block error probability for i.i.d.\ random coding are derived and compared to the exact calculations.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.