Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Linear Time-Periodic System Identification with Grouped Atomic Norm Regularization (2003.06653v2)

Published 14 Mar 2020 in eess.SY and cs.SY

Abstract: This paper proposes a new methodology in linear time-periodic (LTP) system identification. In contrast to previous methods that totally separate dynamics at different tag times for identification, the method focuses on imposing appropriate structural constraints on the linear time-invariant (LTI) reformulation of LTP systems. This method adopts a periodically-switched truncated infinite impulse response model for LTP systems, where the structural constraints are interpreted as the requirement to place the poles of the non-truncated models at the same locations for all sub-models. This constraint is imposed by combining the atomic norm regularization framework for LTI systems with the group lasso technique in regression. As a result, the estimated system is both uniform and low-order, which is hard to achieve with other existing estimators. Monte Carlo simulation shows that the grouped atomic norm method does not only show better results compared to other regularized methods, but also outperforms the subspace identification method under high noise levels in terms of model fitting.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube