Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Text Similarity Using Word Embeddings to Classify Misinformation (2003.06634v1)

Published 14 Mar 2020 in cs.CL

Abstract: Fake news is a growing problem in the last years, especially during elections. It's hard work to identify what is true and what is false among all the user generated content that circulates every day. Technology can help with that work and optimize the fact-checking process. In this work, we address the challenge of finding similar content in order to be able to suggest to a fact-checker articles that could have been verified before and thus avoid that the same information is verified more than once. This is especially important in collaborative approaches to fact-checking where members of large teams will not know what content others have already fact-checked.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.