Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Random Forest Classifier Based Prediction of Rogue waves on Deep Oceans (2003.06431v1)

Published 13 Mar 2020 in physics.ao-ph and cs.LG

Abstract: In this paper, we present a novel approach for the prediction of rogue waves in oceans using statistical machine learning methods. Since the ocean is composed of many wave systems, the change from a bimodal or multimodal directional distribution to unimodal one is taken as the warning criteria. Likewise, we explore various features that help in predicting rogue waves. The analysis of the results shows that the Spectral features are significant in predicting rogue waves. We find that nonlinear classifiers have better prediction accuracy than the linear ones. Finally, we propose a Random Forest Classifier based algorithm to predict rogue waves in oceanic conditions. The proposed algorithm has an Overall Accuracy of 89.57% to 91.81%, and the Balanced Accuracy varies between 79.41% to 89.03% depending on the forecast time window. Moreover, due to the model-free nature of the evaluation criteria and interdisciplinary characteristics of the approach, similar studies may be motivated in other nonlinear dispersive media, such as nonlinear optics, plasma, and solids, governed by similar equations, which will allow for the early detection of extreme waves

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.