Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hyper-reduction for parametrized transport dominated problems via online-adaptive reduced meshes (2003.06362v3)

Published 13 Mar 2020 in math.NA and cs.NA

Abstract: We propose an efficient residual minimization technique for the nonlinear model-order reduction of parameterized hyperbolic partial differential equations. Our nonlinear approximation space is a span of snapshots evaluated on a shifted spatial domain, and we compute our reduced approximation via residual minimization. To speed-up the residual minimization, we compute and minimize the residual on a (preferably small) subset of the mesh, the so-called reduced mesh. Due to the nonlinearity of our approximation space we show that, similar to the solution, the residual also exhibits transport-type behaviour. To account for this behaviour, we introduce online-adaptivity in the reduced mesh by "moving" it along the spatial domain with parameter dependent shifts. We also present an extension of our method to spatial transforms different from shifting. Numerical experiments showcase the effectiveness of our method and the inaccuracies resulting from a non-adaptive reduced mesh.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.