Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Comb Diagrams for Discrete-Time Feedback (2003.06214v1)

Published 13 Mar 2020 in cs.LO

Abstract: The data for many useful bidirectional constructions in applied category theory (optics, learners, games, quantum combs) can be expressed in terms of diagrams containing "holes" or "incomplete parts", sometimes known as comb diagrams. We give a possible formalization of what these circuits with incomplete parts represent in terms of symmetric monoidal categories, using the dinaturality equivalence relations arising from a coend. Our main idea is to extend this formal description to allow for infinite circuits with holes indexed by the natural numbers. We show how infinite combs over an arbitrary symmetric monoidal category form again a symmetric monoidal category where notions of delay and feedback can be considered. The constructions presented here are still preliminary work.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.