Papers
Topics
Authors
Recent
2000 character limit reached

Cerny-Starke conjecture from the sixties of XX century (2003.06177v4)

Published 13 Mar 2020 in cs.FL

Abstract: A word $s$ of letters on edges of underlying graph $\Gamma$ of deterministic finite automaton (DFA) is called synchronizing if $s$ sends all states of the automaton to a unique state. J. \v{C}erny discovered in 1964 a sequence of $n$-state complete DFA possessing a minimal synchronizing word of length $(n-1)2$. The hypothesis, mostly known today as \v{C}erny conjecture, claims that $(n-1)2$ is a precise upper bound on the length of such a word over alphabet $\Sigma$ of letters on edges of $\Gamma$ for every complete $n$-state DFA. The hypothesis was formulated in 1966 by Starke. Algebra with nonstandard operation over special class of matrices induced by words in the alphabet of labels on edges is used to prove the conjecture. The proof is based on the connection between length of words $u$ and dimension of the space generated by solution $L_x$ of matrix equation $M_uL_x=M_s$ for synchronizing word $s$, as well as on relation between ranks of $M_u$ and $L_x$. Important role below placed the notion of pseudo inverseL matrix, sometimes reversible.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.