Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A High-Performance Object Proposals based on Horizontal High Frequency Signal (2003.06124v2)

Published 13 Mar 2020 in cs.CV, cs.LG, and eess.IV

Abstract: In recent years, the use of object proposal as a preprocessing step for target detection to improve computational efficiency has become an effective method. Good object proposal methods should have high object detection recall rate and low computational cost, as well as good localization quality and repeatability. However, it is difficult for current advanced algorithms to achieve a good balance in the above performance. For this problem, we propose a class-independent object proposal algorithm BIHL. It combines the advantages of window scoring and superpixel merging, which not only improves the localization quality but also speeds up the computational efficiency. The experimental results on the VOC2007 data set show that when the IOU is 0.5 and 10,000 budget proposals, our method can achieve the highest detection recall and an mean average best overlap of 79.5%, and the computational efficiency is nearly three times faster than the current fastest method. Moreover, our method is the method with the highest average repeatability among the methods that achieve good repeatability to various disturbances.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.